Repeated amphetamine couples norepinephrine transporter and calcium channel activities in PC12 cells.

نویسندگان

  • L Kantor
  • M Zhang
  • B Guptaroy
  • Y H Park
  • M E Gnegy
چکیده

Repeated intermittent amphetamine enhances efflux of dopamine through the dopamine transporter in rat basal ganglia and through the norepinephrine transporter in rat pheochromocytoma PC12 cells. Extracellular Ca2+ is required for the detection of this enhancement in the rat. In this study, we examined the role of Ca2+ and Ca2+ channels in the enhanced amphetamine-induced dopamine efflux that develops in PC12 cells following repeated intermittent amphetamine. Repeated pretreatment of PC12 cells with 1 microM amphetamine followed by a drug-free period increased amphetamine-induced efflux of dopamine compared with controls. The enhancement in amphetamine-induced dopamine efflux depended upon the presence of extracellular Ca2+ and was inhibited by the blockade of N-type and L-type Ca2+ channels. The enhanced dopamine efflux was not altered by tetanus toxin or reserpine, treatments that abrogate synaptic vesicle-mediated, exocytotic dopamine efflux. Measurement of intracellular Ca2+ concentrations using fura-2/acetoxymethyl ester revealed that amphetamine increased intracellular Ca2+ by a transporter-dependent mechanism. In amphetamine-pretreated cells, amphetamine elicited a greater increase in intracellular Ca2+; this increase depended upon the presence of extracellular Ca2+ and N- and L-type Ca2+ channel activity. The enhanced amphetamine-induced dopamine efflux requires Ca2+/calmodulin kinase activity. In vehicle-treated cells, 1 microM amphetamine inhibited the calmodulin kinase activity although it did not in amphetamine-pretreated cells. This study suggests that repeated intermittent amphetamine couples norepinephrine transporter activity and Ca2+ signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein kinase C and intracellular calcium are required for amphetamine-mediated dopamine release via the norepinephrine transporter in undifferentiated PC12 cells.

The role of protein kinase C and intracellular Ca(2+) on amphetamine-mediated dopamine release through the norepinephrine plasmalemmal transporter in undifferentiated PC12 cells was investigated. The selective protein kinase C inhibitor chelerythrine completely inhibited endogenous dopamine release elicited by 1 microM amphetamine. Direct activation of protein kinase C increased dopamine releas...

متن کامل

Enhanced amphetamine-mediated dopamine release develops in PC12 cells after repeated amphetamine treatment.

We previously demonstrated that rats treated with repeated, intermittent amphetamine displayed enhanced amphetamine-mediated dopamine release in the striatum. In this study, we examined whether amphetamine pretreatment would elicit enhanced amphetamine-mediated dopamine release in a cultured cell line in the absence of intact synaptic connections. PC12 cells pretreated with 1 microM amphetamine...

متن کامل

Repeated, intermittent treatment with amphetamine induces neurite outgrowth in rat pheochromocytoma cells (PC12 cells).

Repeated, intermittent treatment with amphetamine (AMPH) leads to long-term neurobiological adaptations in rat brain including an increased number and branching of dendritic spines. This effect depends upon several different cell types in the intact brain. Here we demonstrate that repeated, intermittent AMPH treatment induces neurite outgrowth in cultured PC12 cells without the requirement for ...

متن کامل

Nimodipine Protects PC12 Cells against Oxygen-Glucose Deprivation

The protective effect of a L-type calcium channel blocker, nimodipine, on cell injury induced by oxygen-glucose deprivation (OGD) in PC12 cells was investigated. PC12 cells were exposed to in-vitro oxygen-glucose deprivation (30 minutes and 60 minutes respectively) in the presence or absence of nimodipine (10mM/L) in three different time schedules (pre-24h, pre-3h and concurrently). Cellular vi...

متن کامل

Repeated cocaine modifies the mechanism by which amphetamine releases dopamine.

This study determined whether daily cocaine administration initiates a calcium requirement for the increase in extracellular dopamine produced by psychostimulants. The increase in extracellular dopamine induced by perfusion of amphetamine through a microdialysis probe in the nucleus accumbens shell was enhanced in cocaine- relative to saline-pretreated rats. The augmented portion of the ampheta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 311 3  شماره 

صفحات  -

تاریخ انتشار 2004